Month: June 2018

Do I Need a Gigabit Switch or 10/100Mbps Switch?

Ethernet network speeds have evolved significantly over time and typically range from Ethernet (802.11) at 10Mbps, Fast Ethernet (IEEE 802.3u) at 100Mbps, Gigabit Ethernet (IEEE 802.3-2008) at 1000Mbps and 10 Gigabit Ethernet (IEEE 802.3a) at 10Gbps. Meanwhile, Ethernet switches have also escalated from 10/100Mbps switch to Gigabit switch, 10GbE switch, and even 100GbE switches. The topic came up frequently that “Do I Need a Gigabit Switch or 10/100Mbps Switch?” Gigabit switch vs 10/100Mbps switch, which do I need to satisfy my network speeds requirement? This post will give you the answer.

Ethernet Speed

Gigabit Switch: the Mainstream on Network Switch Market

A Gigabit switch is an Ethernet switch that connects multiple devices, such as computers, servers, or game systems, to a Local Area Network (LAN). Small business and home offices often use Gigabit switches to allow more than one device to share a broadband Internet connection. A gigabit switch operates in the same manner, only at data rates much greater than standard or Fast Ethernet. People can use these switches to quickly transfer data between devices in a network, or to download from the Internet at maximum speeds of 1000Mbps. If a switch says “Gigabit”, it really means the same thing as 10/100/1000, because Gigabit switches support all three speed levels and will auto-switch to the appropriate one when something is plugged in. The following is a Gigabit 8 port poe switch with 8 x 10/100/1000Base-T RJ45 Ethernet ports.

8 port poe switch

10/100Mbps Switch: Still Alive and Well for Some Reason

10/100Mbps switch is a Fast Ethernet switch released earlier than Gigabit Ethernet switch. The data speed of 10/100Mbps switch is rated for 10 or 100Mbps. When a network switch says “10/100”, it means that each port on the switch can support both 10Mbps and 100Mbps connection speeds, and will usually auto-switch depending on what’s plugged into it. Currently, few devices run at 10Mbps, but it is still alive on the market for some reason. Actually, 10/100 is sufficient for internet browsing and Netflix. But if you will be doing more than one thing with your network connection, such as file transfers, or the set-top box, I would recommend you go with the Gigabit switch.

10/100Mbps Switch

Gigabit Switch vs 10/100Mbps Switch: How to Choose?

Network engineers who refresh the edge of their campus LAN encounter a fundamental choice: Stick with 100Mbps Fast Ethernet or upgrade to Gigabit Ethernet (GbE). Vendors will undoubtedly push network engineers toward pricier GbE, but network engineers need to decide for themselves which infrastructure is right for the business. Currently, Gigabit switch is much more popular than Fast Ethernet 10/100Mbps switch. Because gigabit switch used in tandem with a gigabit router will allow you to use your local network at speeds up to ten times greater than 10/100Mbps switch. If either of these component are not gigabit, the entire network will be limited to 10/100 speeds. So, in order to use the maximum amount of speed your network can pump out, you need every single component in your network (including you computers) to be gigabit compliant. In addition, by delivering more bandwidth and more robust management, Gigabit switches are also more energy efficient than 10/100Mbps switches. This offers enterprises the opportunity to lower their power consumption on the network edge.

Conclusion

There’s a multitude of switch options to choose from on the dazzling market. So, before determining the right switch for your network, you’re supposed to have a close look at your current deployment and future needs. But for most cases, we recommend you buy Gigabit Ethernet devices instead of Fast Ethernet devices, even if they cost a little bit more. FS provides a full set of Gigabit switches, including 8 port switch, 24 port switch, 48 port switch, etc. With these high performance Gigabit Ethernet switches, your local network will run faster with better internet speed.

Originally published at http://www.fiber-optic-tutorial.com/gigabit-switch-vs-10-100mbps-switch.html

Advertisements

TAP Aggregation Switch: Key to Monitor Network Traffic

For network professionals, Ethernet switches have already been used very commonly in network design. In order to ensure network security and monitor the performance of the standard Ethernet switches, network test access port (TAPs) have emerged as one of the primary sources for data monitoring or network traffic monitoring. What is network TAP or TAP aggregation switch, and how to deploy it for network traffic monitoring? This post will give you the answer.

What Is TAP Aggregation Switch or Network TAP?

A network tap is a hardware device which provides an approach to access the data flowing across a network. It functions by flow copy or aggregation, thus it’s also called TAP aggregation switch. TAP aggregation switch works by designating a device to allow the aggregation of multiple TAPs and to connect to multiple monitoring systems. In this process, all the monitoring devices are linked to specific points in the network fabric that handle the packets that need to be observed. In most cases, a third party TAP aggregation switch monitors the traffic between two points in the network. If the network between point A and B consists of a physical cable, a network TAP or TAP aggregation switch might be the best way to accomplish this monitoring. TAP aggregation switch deployed between point A and B passes all traffic through unimpeded, but it also copies that same data to its monitor port, which could enable a third party to listen.

Deployment Scenario of TAP Aggregation Switch

TAP aggregation switches or network TAPs can be extremely useful in monitoring traffic because they provide direct inline access to data that flows through the network. The following part illustrates the typical applications of TAP aggregation switches in data center and carrier network.

Application in Data Center
As shown in the figure below, user can enable the timestamp and source port label function of TAP devices. The server cluster can access the exact packet process time in each data center layer via source port and timestamp message carried by the packets. From port1, port2, port3, user can distinguish the devices that the streams come from. Through T1, T2 and T3, packets forward latency of each device can be calculated, according to which users can find out the bottleneck during packet forwarding for the further optimization of data center network.

TAP Aggregation Switch for Data Center

Application in Carrier Network
TAP aggregation switch can also be used to assist DPI (Deep Packet Inspection) in carrier networks. As illustrated below, TAP aggregation switch is applied to forward flows of carrier at internet access point and sends a mirrored copy of the packet flow to DPI device at the same time. The DPI device is for traffic analysis, once a virus on website or illegal information has been monitored, the flows will be blocked by a five elements table sent from management channel between DPI and TAP.

TAP Aggregation Switch for Carrier Network

FS TAP Aggregation Switches Solution

FS network TAPs or TAP aggregation switches deliver security, visibility and traffic analysis for high density, non-blocking 1G/10/40/100GbE networks at any scale with advanced traffic management capabilities for lossless monitoring of network traffic. They can cost-effectively and losslessly monitor all data center network traffic, while capturing and analyzing only the traffic that is needed. The table below lists FS T5800 and T8050 series TAP aggregation switches.

TAP Aggregation
Key Features
  • Standard 1U 19’’ rack mountable, 240 Gbps switching capability
  • 8×10/100/1000 Base-T Ethernet Ports, 8×1000 Base-X SFP Ports (Combo)
  • 12x10GE SFP+ Ports
  • Dual modular power supply
  • Standard 1U 19’’ rack mountable
  • 4x10GE SFP+ Ports(Combo)
  • 20x40GE QSFP+ Ports
  • 4x100GE QSFP28 Ports
  • Dual modular power supply
  • Standard 1U 19’’ rack mountable
  • 48x10GE SFP+ Ports
  • 2x40GE QSFP+ Ports
  • 4x100GE QSFP28 Ports
  • Dual modular power supply
  • Standard 1U 19’’ rack mountable
  • 48x10GE SFP+ Ports
  • 6x40GE QSFP+ Ports
  • Dual modular power supply
  • Standard 1U 19’’ rack mountable
  • 32x10GE SFP+ Ports
  • 2x40GE QSFP+ Ports
  • Dual modular power supply

Conclusion

TAP aggregation switches are crucial to any network monitoring plan because they offer an uncensored view of all network traffic. With FS TAP aggregation switches, customers can transform opaque data center traffic into comprehensive visibility for security threat detection, service availability monitoring as well as traffic recording and troubleshooting. Apart from TAP aggregation switches, the standard Ethernet switches including Gigabit switches, 10gb switches, 40gb switches and 100gb switches are also available for your choice.

Originally published at http://www.fiber-optic-tutorial.com/tap-aggregation-switch-monitor-network-traffic.html